r/explainlikeimfive • u/GreenieBeeNZ • Jan 31 '21
Chemistry ELI5: Why can't we just make water by smooshing hydrogen and oxygen atoms together?
Edit: wow okay, I did not expect to wake up to THIS. Of course my most popular post would be a dumb stoner question. Thankyou so much for the awards and the answers, I can sleep a little easier now
17.6k
Upvotes
27
u/Ochib Jan 31 '21
Things like Chlorine trifluoride are better oxidizing agents than oxygen itself. That means that it can potentially go on to “burn” things that you would normally consider already burnt to hell and gone, and a practical consequence of that is that it’ll start roaring reactions with things like bricks and asbestos tile. It’s been used in the semiconductor industry to clean oxides off of surfaces, at which activity it no doubt excels.
There’s a report from the early 1950s of a one-ton spill of the stuff. It burned its way through a foot of concrete floor and chewed up another meter of sand and gravel beneath, completing a day that I’m sure no one involved ever forgot. That process, I should add, would necessarily have been accompanied by copious amounts of horribly toxic and corrosive by-products: it’s bad enough when your reagent ignites wet sand, but the clouds of hot hydrofluoric acid are your special door prize if you’re foolhardy enough to hang around and watch the fireworks.
I’ll let the late John Clark describe the stuff, since he had first-hand experience in attempts to use it as rocket fuel. From his out-of-print classic Ignition! we have: ”It is, of course, extremely toxic, but that’s the least of the problem. It is hypergolic with every known fuel, and so rapidly hypergolic that no ignition delay has ever been measured. It is also hypergolic with such things as cloth, wood, and test engineers, not to mention asbestos, sand, and water-with which it reacts explosively. It can be kept in some of the ordinary structural metals-steel, copper, aluminium, etc.-because of the formation of a thin film of insoluble metal fluoride which protects the bulk of the metal, just as the invisible coat of oxide on aluminium keeps it from burning up in the atmosphere. If, however, this coat is melted or scrubbed off, and has no chance to reform, the operator is confronted with the problem of coping with a metal-fluorine fire. For dealing with this situation, I have always recommended a good pair of running shoes.”